## The WATERS Network:

An MREFC Initiative involving three NSF

**Directorates:** 

Engineering,

Geosciences,

Social, Behavioral & Economic Sciences





## The overarching question

- How do we establish a framework to more reliably predict and manage water quantity and quality in the U.S. as climate changes, populations grow, land use evolves, and individual and societal choices are made?
  - How will regional-scale fresh water availability and demand change in the future?
  - -How will human behavior, land-use change, and the water management infrastructure interact with supply to affect the quality of water?

## Status as NSF MREFC "horizon" project

(Major Research and Equipment Facilities Construction)

- This year: produce compelling science plan
  - Draft 15 May for review by NRC
  - Then respond to review
- Conceptual design (2-3 years)
  - Requirements definition,
    prioritization, review
  - Identify critical enabling technologies and high risk items
  - Top-down parametric cost and contingency estimates and risk assessment
  - Draft Project Execution Plan

- Preliminary design/ readiness stage
  - NEON is at this stage
- National Science Board approves - final design
- Construction and Commissioning
  - From MREFC account
- Operation and maintenance
  - From Directorates
- Renewal/termination

### Team members

- Co-Investigators
  - -John Braden, Illinois
  - Rick Hooper, CUAHSI
  - -Barbara Minsker, Illinois
  - -Jerry Schnoor, Iowa
- Senior Investigators
  - Roger Bales, UC Merced
  - Martha Conklin, UC Merced
  - Nick Clesceri, RPIemeritus

- —Lou Derry, Cornell
- —Tom Harmon, UC Merced
- -Anna Michalak, Michigan
- James Mihelcic, SouthFlorida
- Sandra Schneider, SouthFlorida
- -David Tarboton, Utah State
- Jeanne VanBriesen, CMU
- -Peter Wilcock, JHU

# Would WATERS Network have helped in Iowa, June 2008?

- New, experimental rain radar would provide better precipitation measurements
- Lidar altimetry data would enable much better prediction of flooded areas
- Better models of flood plain, sewage collection and bypass systems
  - to estimate runoff loadings of E coli and fecal coliform bacteria
  - warn about wading hazard



How will flood probabilities and associated inundation areas change as climate and land use change?

Could flood damage be minimized or prevented with this additional knowledge?





## Gulf of Mexico Hypoxia Caused by Runoff from Mississippi Basin

In 2007, dead zone was 21,000 km<sup>2</sup>.

What will be the impacts of targeted BMPs and/or changes in centralized and decentralized treatment?

Rapid growth followed 1993 floods. What will 2008 bring?



Mississippi River meets the Gulf of Mexico

(Source: http://www.gulfhypoxia.net)

#### Premise for the WATERS Network

- Newly designed, national sampling strategy that integrates
  - extant in situ and remotely sensed data
  - new measurements, analyses, and experiments at a realistic number of facilities and representative basins
  - extension to large scales and to all regions through models, synthesis, remote sensing, and cyberinfrastructure
  - education and outreach, citizen science, and interaction with stakeholders
- Requires close collaboration with Federal, state, and local agencies and citizen groups

#### Domain

- pristine, rural, and urban areas
- constructed
   networks and
   facilities for
   management and
   treatment

#### Prediction

- episodes like floods and stormwater overflows
- seasonal events like snowmelt runoff and surges of agricultural wastes
- projections over multiple generations



## Four science/technology themes emerge

- Variables and their scales and precision that we should predict
- Scaling of measurements from plots and facilities to large basins, and transfer of findings and capabilities from one area to another
- Behavior of coupled human-natural systems, including engineered systems
- Incorporation of emerging technologies and experimental facilities

## Need for the WATERS Network

- Current practices do not now predict water quantity and its constituents accurately enough for effective management
  - Despite past investments, financial losses and personal injury from drought, flood, and pollution occur
- Current empirical methods were developed over a period when human impacts were isolated and climate was more stable
  - In addition to spatial and temporal variability, we face a different future water environment caused by population growth, land use modification, and climate change
- We need a more mechanistic approach

# Typical WATERS Network scope



# "What to predict?" is an interdisciplinary question

- What beneficial decisions can we make based on a prediction, as compared to decisions without the prediction?
  - Need to understand and predict interactions among heterogeneous processes (e.g. land use and climate change) at many scales that produce the spatially and temporally variable quantity and quality of water
  - Thereby informing options for management and engineering design
  - Requires understanding of human information processing and the role of scientific information in decision making
  - Help evaluate trade-offs among temporal and spatial scales, accuracy, and uncertainty of predictions

## Scaling and transferability

- Research in testbeds is improving our ability to understand and predict from detailed measurements to the scale of a large basin
- NSF is currently funding 11 two-year "test-bed" projects to gain field experience with sensor deployment and operation, along with related projects
  - Critical Zone Observatories (CZO)
  - CyberInfrastructure for Environmental Observatories:
     Prototype Systems (CEOPS)
  - Materials Use: Science,
    Engineering and Society (MUSES)

# Remote sensing example: fractional snow-covered area from MODIS



# Illustrative testbed sites: (Funding through direct NSF applications)



# Define "similar" environments for sampling design

- Divide country into "similar" areas that are comparable and can intensively studied at one site
  - Capture the diverse hydrologic conditions that exist across the U.S.
  - Set of variables that quantify hydrologic setting, both physical and human influenced
- Example: Stratified sampling based on the Human Influenced Water Resource Classification (HIWRC)



# Order

## Nested design

3rd order Cluster containing catchments draining directly to 1st, 2<sup>nd</sup> and 3<sup>rd</sup> order streams

1st order catchment



Terrestrial sensor package over catchment

Stream sensor package

## Gradient design

Systematic data collection across gradients to allow isolation of individual causative factors



## Models to consider (not exhaustive)

- Water and wastewater infrastructure
  - GPS-X, EPANET, Waterspot
- Grid-scale hydrologic models
  - DHSVM, HYDRUS, ParFlow, SLIM, PIHM, RHESSys
- Basin-scale models
  - -HSPF, QUAL2K, SAC-SMA, SWAT, SWMM, THREW, VIC

## Behavior of coupled human-natural systems

- Important links between natural and human components
  - Human component includes engineered systems, which impose their own spatial and temporal variability on water and its constituents
- The ways that humans and their institutions use and interpret scientific information to make decisions is a fundamental question in social science
  - And the findings feed back to the hydrologic science and environmental engineering to help focus goals for the new knowledge needed
- Example question: How do institutions that manage water quality emerge and evolve in response to environmental stresses and social dynamics?

# Innovative technologies and experimental facilities

- Fixed or mobile pilot water/wastewater treatment facilities
- Instrumented drainage basins
- Experimental streams & watershed facilities
- Incorporate new sensor technology
- Cyberinfrastructure
  - Manage the input data and data products
  - Run coupled models and analyze ensembles



#### Collaboration with other MREFCs

- Need to understand interactions between water and ecology (NEON)
- Understanding coastal margins requires interactions with oceanographers (OOI)
- Any activities in Arctic regions could be collaborations with AON
- Collaborations could involve:
  - Data sharing
  - Joint research and E&O activities
  - Overlap of sites

#### The WATERS Network—Intellectual Merit

 Understand and predict interactions between heterogeneous processes at different scales that produce the variability found in the water environment

- Thereby inform options for management and engineering design
- Requires understanding of human information processing and the role of scientific information in decision making

- Help evaluate trade-offs among temporal and spatial scales, accuracy, and precision of predictions
- (What beneficial decisions can we make based on the prediction, as compared to decisions without the prediction?)

## Conclusions

- Transformative science and engineering
  - Predictive power, including engineered and hydrologic systems
  - Integration of disciplines across NSF directorates (GEO, ENG, SBE)
- Why a Network?
  - Stratified sampling approach must be integrated across nation
  - Theory and models must be location-independent
  - Significant inter-agency and inter-organizational collaboration to move new research findings into operational practice
- Broader impacts to society, allied disciplines, and education and outreach

## MREFC management issues

- Boundary conditions
  - No MREFC precedent for a such a broad multi-disciplinary consortium
  - Hydrologic sciences community already has a formal consortium (CUAHSI), but other communities do not
  - Water research and management are performed by many federal, state, interstate, and local governmental bodies
- Need to keep communities engaged, so selection of participants must be transparent

- To implement, WATERS Network must integrate with mission agencies (federal, state, local)
  - Common research interests
    with WN
  - Needs and expertise that support strong:
    - Problem-driven basic research
    - Research-driven problem solving
  - Extensive existing facilities and data collection efforts to leverage